Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.108
Filtrar
1.
Mem Inst Oswaldo Cruz ; 119: e230040, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655925

RESUMO

BACKGROUND: The availability of genes and protein sequences for parasites has provided valuable information for drug target identification and vaccine development. One such parasite is Bartonella quintana, a Gram-negative, intracellular pathogen that causes bartonellosis in mammalian hosts. OBJECTIVE: Despite progress in understanding its pathogenesis, limited knowledge exists about the virulence factors and regulatory mechanisms specific to B. quintana. METHODS AND FINDINGS: To explore these aspects, we have adopted a subtractive proteomics approach to analyse the proteome of B. quintana. By subtractive proteins between the host and parasite proteome, a set of proteins that are likely unique to the parasite but absent in the host were identified. This analysis revealed that out of the 1197 protein sequences of the parasite, 660 proteins are non-homologous to the human host. Further analysis using the Database of Essential Genes predicted 159 essential proteins, with 28 of these being unique to the pathogen and predicted as potential putative targets. Subcellular localisation of the predicted targets revealed 13 cytoplasmic, eight membranes, one periplasmic, and multiple location proteins. The three-dimensional structure and B cell epitopes of the six membrane antigenic protein were predicted. Four B cell epitopes in KdtA and mraY proteins, three in lpxB and BQ09550, whereas the ftsl and yidC proteins were located with eleven and six B cell epitopes, respectively. MAINS CONCLUSIONS: This insight prioritises such proteins as novel putative targets for further investigations on their potential as drug and vaccine candidates.


Assuntos
Vacinas Bacterianas , Bartonella quintana , Proteômica , Bartonella quintana/imunologia , Bartonella quintana/genética , Vacinas Bacterianas/imunologia , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/genética , Humanos , Simulação por Computador , Fatores de Virulência/imunologia , Fatores de Virulência/genética , Proteoma
2.
Virulence ; 15(1): 2345019, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38656137

RESUMO

Klebsiella pneumoniae is an important gram-negative bacterium that causes severe respiratory and healthcare-associated infections. Although antibiotic therapy is applied to treat severe infections caused by K. pneumoniae, drug-resistant isolates pose a huge challenge to clinical practices owing to adverse reactions and the mismanagement of antibiotics. Several studies have attempted to develop vaccines against K. pneumoniae, but there are no licensed vaccines available for the control of K. pneumoniae infection. In the current study, we constructed a novel DNA vaccine, pVAX1-YidR, which encodes a highly conserved virulence factor YidR and a recombinant expression plasmid pVAX1-IL-17 encoding Interleukin-17 (IL-17) as a molecular adjuvant. Adaptive immune responses were assessed in immunized mice to compare the immunogenicity of the different vaccine schemes. The results showed that the targeted antigen gene was expressed in HEK293T cells using an immunofluorescence assay. Mice immunized with pVAX1-YidR elicited a high level of antibodies, induced strong cellular immune responses, and protected mice from K. pneumoniae challenge. Notably, co-immunization with pVAX1-YidR and pVAX1-IL-17 significantly augmented host adaptive immune responses and provided better protection against K. pneumoniae infections in vaccinated mice. Our study demonstrates that combined DNA vaccines and molecular adjuvants is a promising strategy to develop efficacious antibacterial vaccines against K. pneumoniae infections.


Assuntos
Vacinas Bacterianas , Modelos Animais de Doenças , Interleucina-17 , Infecções por Klebsiella , Klebsiella pneumoniae , Vacinas de DNA , Animais , Klebsiella pneumoniae/imunologia , Klebsiella pneumoniae/genética , Infecções por Klebsiella/prevenção & controle , Infecções por Klebsiella/imunologia , Interleucina-17/imunologia , Interleucina-17/genética , Vacinas de DNA/imunologia , Vacinas de DNA/genética , Vacinas de DNA/administração & dosagem , Camundongos , Humanos , Feminino , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/genética , Vacinas Bacterianas/administração & dosagem , Células HEK293 , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/genética , Imunização , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Fatores de Virulência/imunologia , Fatores de Virulência/genética , Imunidade Adaptativa , Camundongos Endogâmicos BALB C , Adjuvantes Imunológicos/administração & dosagem , Imunidade Celular
3.
Nat Commun ; 14(1): 2898, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217469

RESUMO

The DNA sensor cyclic GMP-AMP synthase (cGAS) is critical in host antiviral immunity. Vaccinia virus (VACV) is a large cytoplasmic DNA virus that belongs to the poxvirus family. How vaccinia virus antagonizes the cGAS-mediated cytosolic DNA-sensing pathway is not well understood. In this study, we screened 80 vaccinia genes to identify potential viral inhibitors of the cGAS/Stimulator of interferon gene (STING) pathway. We discovered that vaccinia E5 is a virulence factor and a major inhibitor of cGAS. E5 is responsible for abolishing cGAMP production during vaccinia virus (Western Reserve strain) infection of dendritic cells. E5 localizes to the cytoplasm and nucleus of infected cells. Cytosolic E5 triggers ubiquitination of cGAS and proteasome-dependent degradation via interacting with cGAS. Deleting the E5R gene from the Modified vaccinia virus Ankara (MVA) genome strongly induces type I IFN production by dendritic cells (DCs) and promotes DC maturation, and thereby improves antigen-specific T cell responses.


Assuntos
Células Dendríticas , Nucleotidiltransferases , Vírus Vaccinia , Proteínas Virais , Camundongos Endogâmicos C57BL , Animais , Camundongos , Camundongos Knockout , Feminino , Nucleotidiltransferases/imunologia , Células Dendríticas/imunologia , Células Dendríticas/virologia , Vírus Vaccinia/patogenicidade , Fatores de Virulência/imunologia , Ubiquitinação , Proteínas Virais/genética , Proteínas Virais/imunologia , Complexo de Endopeptidases do Proteassoma , Interferon Tipo I/imunologia , Células HEK293 , Humanos , Proteínas de Membrana/imunologia , Linfócitos T/imunologia
4.
J Virol ; 97(2): e0122722, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36656014

RESUMO

African swine fever (ASF) is a highly contagious infectious disease of domestic pigs and wild boars caused by African swine fever virus (ASFV), with a mortality rate of up to 100%. In order to replicate efficiently in macrophages and monocytes, ASFV has evolved multiple strategies to evade host antiviral responses. However, the underlying molecular mechanisms by which ASFV-encoded proteins execute immune evasion are not fully understood. In this study, we found that ASFV pH240R strongly inhibits transcription, maturation, and secretion of interleukin-1ß (IL-1ß). Importantly, pH240R not only targeted NF-κB signaling but also impaired NLRP3 inflammasome activation. In this mechanism, pH240R interacted with NF-kappa-B essential modulator (NEMO), a component of inhibitor of kappa B kinase (IKK) complex and subsequently reduced phosphorylation of IκBα and p65. In addition, pH240R bonded to NLRP3 to inhibit NLRP3 inflammasome activation, resulting in reduced IL-1ß production. As expected, infection with H240R-deficient ASFV (ASFV-ΔH240R) induced more inflammatory cytokine expression both in vitro and in vivo than its parental ASFV HLJ/18 strain. Consistently, H240R deficiency reduced the viral pathogenicity in pigs compared with its parental strain. These findings reveal that the H240R gene is an essential virulence factor, and deletion of the H240R gene affects the pathogenicity of ASFV HLJ/18 by enhancing antiviral inflammatory responses, which provides insights for ASFV immune evasion mechanisms and development of attenuated live vaccines and drugs for prevention and control of ASF. IMPORTANCE African swine fever (ASF), caused by African swine fever virus (ASFV), is a highly contagious and acute hemorrhagic viral disease of domestic pigs, with a high mortality approaching 100%. ASFV has spread rapidly worldwide and caused huge economic losses and ecological consequences. However, the pathogenesis and immune evasion mechanisms of ASFV are not fully understood, which limits the development of safe and effective ASF attenuated live vaccines. Therefore, investigations are urgently needed to identify virulence factors that are responsible for escaping the host antiviral innate immune responses and provide a new target for development of ASFV live-attenuated vaccine. In this study, we determined that the H240R gene is an essential virulence factor, and its depletion affects the pathogenicity of ASFV by enhancing NLRP3-mediated inflammatory responses, which provides theoretical support for the development of an ASFV attenuated live vaccine.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Proteínas Virais , Animais , Febre Suína Africana/imunologia , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/patogenicidade , Deleção de Genes , Inflamassomos/genética , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Sus scrofa , Suínos , Proteínas Virais/genética , Proteínas Virais/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/imunologia
5.
Front Cell Infect Microbiol ; 12: 941939, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967844

RESUMO

Lymphostatin is a virulence factor of enteropathogenic E. coli (EPEC) and non-O157 serogroup enterohaemorrhagic E. coli. Previous studies using whole-cell lysates of EPEC showed that lymphostatin inhibits the mitogen-activated proliferation of bulk human peripheral blood mononuclear cells (PBMCs) and the production of cytokines IL-2, IL-4, IL-5, and IFN-γ. Here, we used highly purified lymphostatin and PBMC-derived T cells to show that lymphostatin inhibits anti-CD3/anti-CD28-activated proliferation of human CD4+ and CD8+ T cells and blocks the synthesis of IL-2, IL-4, IL-10 and IFN-γ without affecting cell viability and in a manner dependent on an N-terminal DTD glycosyltransferase motif. Such inhibition was not observed with T cells activated by phorbol 12-myristate 13-acetate and ionomycin, implying that lymphostatin targets T cell receptor signaling. Analysis of the expression of CD69 indicated that lymphostatin suppresses T cell activation at an early stage and no impacts on apoptosis or necrosis were observed. Flow cytometric analysis of the DNA content of lymphostatin-treated CD4+ and CD8+ T cells showed a concentration- and DTD-dependent accumulation of the cells in the G0/G1 phase of the cell cycle, and corresponding reduction of the percentage of cells in S phase. Consistent with this, we found a marked reduction in the abundance of cyclins D3, E and A and loss of phosphorylated Rb over time in activated T cells from 8 donors treated with lymphostatin. Moreover, the cyclin-dependent kinase (cdk) inhibitor p27kip1, which inhibits progression of the cell cycle at G1 by acting on cyclin E-cdk2 or cyclin D-cdk4 complexes, was found to be accumulated in lymphostatin-treated T cells. Analysis of the abundance of phosphorylated kinases involved in signal transduction found that 30 of 39 were reduced in abundance following lymphostatin treatment of T cells from 5 donors, albeit not significantly so. Our data provide novel insights into the mode of action of lymphostatin on human T lymphocytes.


Assuntos
Toxinas Bacterianas , Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli , Linfócitos T , Apoptose , Toxinas Bacterianas/imunologia , Linfócitos T CD8-Positivos/imunologia , Pontos de Checagem do Ciclo Celular/imunologia , Divisão Celular , Proliferação de Células/fisiologia , Citocinas/biossíntese , Citocinas/imunologia , Escherichia coli Enteropatogênica/imunologia , Escherichia coli Enteropatogênica/patogenicidade , Escherichia coli/imunologia , Escherichia coli/patogenicidade , Infecções por Escherichia coli/imunologia , Proteínas de Escherichia coli/imunologia , Humanos , Interleucina-2 , Interleucina-4 , Leucócitos Mononucleares/imunologia , Necrose , Linfócitos T/imunologia , Fatores de Virulência/imunologia
6.
Nature ; 608(7921): 161-167, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35896747

RESUMO

Invasive fungal pathogens are major causes of human mortality and morbidity1,2. Although numerous secreted effector proteins that reprogram innate immunity to promote virulence have been identified in pathogenic bacteria, so far, there are no examples of analogous secreted effector proteins produced by human fungal pathogens. Cryptococcus neoformans, the most common cause of fungal meningitis and a major pathogen in AIDS, induces a pathogenic type 2 response characterized by pulmonary eosinophilia and alternatively activated macrophages3-8. Here, we identify CPL1 as an effector protein secreted by C. neoformans that drives alternative activation (also known as M2 polarization) of macrophages to enable pulmonary infection in mice. We observed that CPL1-enhanced macrophage polarization requires Toll-like receptor 4, which is best known as a receptor for bacterial endotoxin but is also a poorly understood mediator of allergen-induced type 2 responses9-12. We show that this effect is caused by CPL1 itself and not by contaminating lipopolysaccharide. CPL1 is essential for virulence, drives polarization of interstitial macrophages in vivo, and requires type 2 cytokine signalling for its effect on infectivity. Notably, C. neoformans associates selectively with polarized interstitial macrophages during infection, suggesting a mechanism by which C. neoformans generates its own intracellular replication niche within the host. This work identifies a circuit whereby a secreted effector protein produced by a human fungal pathogen reprograms innate immunity, revealing an unexpected role for Toll-like receptor 4 in promoting the pathogenesis of infectious disease.


Assuntos
Criptococose , Cryptococcus neoformans , Proteínas Fúngicas , Hipersensibilidade , Inflamação , Receptor 4 Toll-Like , Fatores de Virulência , Animais , Criptococose/imunologia , Criptococose/microbiologia , Criptococose/patologia , Cryptococcus neoformans/imunologia , Cryptococcus neoformans/patogenicidade , Citocinas/imunologia , Proteínas Fúngicas/imunologia , Proteínas Fúngicas/metabolismo , Hipersensibilidade/imunologia , Hipersensibilidade/microbiologia , Imunidade Inata , Inflamação/imunologia , Inflamação/microbiologia , Lipopolissacarídeos/imunologia , Pulmão/imunologia , Pulmão/microbiologia , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo , Virulência , Fatores de Virulência/imunologia
7.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35165181

RESUMO

Staphylococcus aureus is a foremost bacterial pathogen responsible for a vast array of human diseases. Staphylococcal superantigens (SAgs) constitute a family of exotoxins from S. aureus that bind directly to major histocompatibility complex (MHC) class II and T cell receptors to drive extensive T cell activation and cytokine release. Although these toxins have been implicated in serious disease, including toxic shock syndrome, the specific pathological mechanisms remain unclear. Herein, we aimed to elucidate how SAgs contribute to pathogenesis during bloodstream infections and utilized transgenic mice encoding human MHC class II to render mice susceptible to SAg activity. We demonstrate that SAgs contribute to S. aureus bacteremia by massively increasing bacterial burden in the liver, and this was mediated by CD4+ T cells that produced interferon gamma (IFN-γ) to high levels in a SAg-dependent manner. Bacterial burdens were reduced by blocking IFN-γ, phenocopying SAg-deletion mutant strains, and inhibiting a proinflammatory response. Infection kinetics and flow cytometry analyses suggested that this was a macrophage-driven mechanism, which was confirmed through macrophage-depletion experiments. Experiments in human cells demonstrated that excessive IFN-γ allowed S. aureus to replicate efficiently within macrophages. This indicates that SAgs promote bacterial survival by manipulating the immune response to inhibit effective clearing of S. aureus Altogether, this work implicates SAg toxins as critical therapeutic targets for preventing persistent or severe S. aureus disease.


Assuntos
Interferon gama/imunologia , Infecções Estafilocócicas/imunologia , Superantígenos/imunologia , Animais , Bacteriemia , Enterotoxinas/imunologia , Exotoxinas/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Interferon gama/metabolismo , Ativação Linfocitária/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/imunologia , Staphylococcus aureus/patogenicidade , Linfócitos T/imunologia , Fatores de Virulência/imunologia
8.
Arterioscler Thromb Vasc Biol ; 42(3): 261-276, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35109674

RESUMO

Over the past 10 years, neutrophil extracellular traps (NETs) have become widely accepted as an integral player in immunothrombosis, due to their complex interplay with both pathogens and components of the coagulation system. While the release of NETs is an attempt by neutrophils to trap pathogens and constrain infections, NETs can have bystander effects on the host by inducing uncontrolled thrombosis, inflammation, and tissue damage. From an evolutionary perspective, pathogens have adapted to bypass the host innate immune response. Staphylococcus aureus (S. aureus), in particular, proficiently overcomes NET formation using several virulence factors. Here we review mechanisms of NET formation and how these are intertwined with platelet activation, the release of endothelial von Willebrand factor, and the activation of the coagulation system. We discuss the unique ability of S. aureus to modulate NET formation and alter released NETs, which helps S. aureus to escape from the host's defense mechanisms. We then discuss how platelets and the coagulation system could play a role in NET formation in S. aureus-induced infective endocarditis, and we explain how targeting these complex cellular interactions could reveal novel therapies to treat this disease and other immunothrombotic disorders.


Assuntos
Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/microbiologia , Staphylococcus aureus/patogenicidade , Tromboinflamação/etiologia , Animais , Fatores de Coagulação Sanguínea/imunologia , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Evasão da Resposta Imune , Camundongos , Modelos Cardiovasculares , Modelos Imunológicos , Neutrófilos/imunologia , Neutrófilos/microbiologia , Ativação Plaquetária , Infecções Estafilocócicas/complicações , Staphylococcus aureus/imunologia , Tromboinflamação/imunologia , Tromboinflamação/microbiologia , Fatores de Virulência/imunologia , Fator de von Willebrand/imunologia
9.
Cell Host Microbe ; 30(1): 8-9, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35026136

RESUMO

Effector-triggered immunity involves "guarded" host processes that, when perturbed by pathogen factors, prompt a secondary response. A recent study published in Nature by Gaidt et al. demonstrates that MORC3 serves as both the guard and the guarded antiviral host factor-creating a "heads, I win; tails, you lose!" scenario.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Adenosina Trifosfatases/genética , Antivirais , Proteínas de Ligação a DNA/genética , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Ubiquitina-Proteína Ligases , Fatores de Virulência/imunologia
10.
PLoS Pathog ; 18(1): e1010270, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35089988

RESUMO

ASFV is a large DNA virus that is highly pathogenic in domestic pigs. How this virus is sensed by the innate immune system as well as why it is so virulent remains enigmatic. In this study, we show that the ASFV genome contains AT-rich regions that are recognized by the DNA-directed RNA polymerase III (Pol-III), leading to viral RNA sensor RIG-I-mediated innate immune responses. We further show that ASFV protein I267L inhibits RNA Pol-III-RIG-I-mediated innate antiviral responses. I267L interacts with the E3 ubiquitin ligase Riplet, disrupts Riplet-RIG-I interaction and impairs Riplet-mediated K63-polyubiquitination and activation of RIG-I. I267L-deficient ASFV induces higher levels of interferon-ß, and displays compromised replication both in primary macrophages and pigs compared with wild-type ASFV. Furthermore, I267L-deficiency attenuates the virulence and pathogenesis of ASFV in pigs. These findings suggest that ASFV I267L is an important virulence factor by impairing innate immune responses mediated by the RNA Pol-III-RIG-I axis.


Assuntos
Vírus da Febre Suína Africana/patogenicidade , Imunidade Inata/imunologia , Fatores de Virulência/imunologia , Virulência/imunologia , Febre Suína Africana/imunologia , Vírus da Febre Suína Africana/imunologia , Animais , RNA Polimerase III/imunologia , Receptores de Superfície Celular/imunologia , Suínos
11.
FASEB J ; 36(2): e22171, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35084749

RESUMO

Toxoplasma gondii is an opportunistic protozoan, which widely infects humans and other warm-blooded animals. The type I interferon (IFN) such as IFN-α/ß is involved in cGAS-STING signaling to resist T. gondii infection. We found in RAW264.7 cells, that T. gondii virulence factor TgROP18I , inhibited IFN-ß production through interacting with interferon regulatory factor 3 (IRF3). Besides, TgROP18I interacted with p62 and Tumor Necrotic Factor Receptor Associated Factor 6 (TRAF6), which resulted in the inhibition of TRAF6-p62 interaction, and phosphorylation of p62. Furthermore, TgROP18I restricted the recruitment of ubiquitin, p62 and microtubule-associated protein light chain 3 (LC3) to the parasitophorous vacuole membrane (PVM) in IFN-γ-stimulated murine cell line L929 cells. In IFN-γ-stimulated human cells, TgROP18I restricted the decoration of PVM with ubiquitin, p62, and LC3, and bound with TRAF2, TRAF6, and p62, respectively. As a result, TgROP18I led to a successful parasitic replication in murine and human cells. Collectively, our study revealed the function of TgROP18I in suppressing host type I interferon responses in T. gondii infection for parasitic immune escape.


Assuntos
Imunidade Inata/imunologia , Proteínas de Membrana/imunologia , Nucleotidiltransferases/imunologia , Transdução de Sinais/imunologia , Toxoplasma/imunologia , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Células HEK293 , Humanos , Fator Regulador 3 de Interferon/imunologia , Interferon Tipo I/imunologia , Interferon gama/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Camundongos , Fosforilação/imunologia , Células RAW 264.7 , Fatores de Virulência/imunologia
12.
Int J Mol Sci ; 23(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35055041

RESUMO

Preterm infants are at increased risk for invasive neonatal bacterial infections. S. epidermidis, a ubiquitous skin commensal, is a major cause of late-onset neonatal sepsis, particularly in high-resource settings. The vulnerability of preterm infants to serious bacterial infections is commonly attributed to their distinct and developing immune system. While developmentally immature immune defences play a large role in facilitating bacterial invasion, this fails to explain why only a subset of infants develop infections with low-virulence organisms when exposed to similar risk factors in the neonatal ICU. Experimental research has explored potential virulence mechanisms contributing to the pathogenic shift of commensal S. epidermidis strains. Furthermore, comparative genomics studies have yielded insights into the emergence and spread of nosocomial S. epidermidis strains, and their genetic and functional characteristics implicated in invasive disease in neonates. These studies have highlighted the multifactorial nature of S. epidermidis traits relating to pathogenicity and commensalism. In this review, we discuss the known host and pathogen drivers of S. epidermidis virulence in neonatal sepsis and provide future perspectives to close the gap in our understanding of S. epidermidis as a cause of neonatal morbidity and mortality.


Assuntos
Interações Hospedeiro-Patógeno , Sepse Neonatal/microbiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus epidermidis/fisiologia , Fatores Etários , Toxinas Bacterianas/genética , Biofilmes , Suscetibilidade a Doenças/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Tolerância Imunológica , Imunidade Inata , Recém-Nascido , Sepse Neonatal/diagnóstico , Sepse Neonatal/prevenção & controle , Sepse Neonatal/terapia , Fatores de Risco , Infecções Estafilocócicas/diagnóstico , Infecções Estafilocócicas/prevenção & controle , Infecções Estafilocócicas/terapia , Virulência/genética , Virulência/imunologia , Fatores de Virulência/genética , Fatores de Virulência/imunologia
13.
Int J Mol Sci ; 23(2)2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35055134

RESUMO

The main purpose of this review is to present justification for the urgent need to implement specific prophylaxis of invasive Staphylococcus aureus infections. We emphasize the difficulties in achieving this goal due to numerous S. aureus virulence factors important for the process of infection and the remarkable ability of these bacteria to avoid host defense mechanisms. We precede these considerations with a brief overview of the global necessitiy to intensify the use of vaccines against other pathogens as well, particularly in light of an impasse in antibiotic therapy. Finally, we point out global trends in research into modern technologies used in the field of molecular microbiology to develop new vaccines. We focus on the vaccines designed to fight the infections caused by S. aureus, which are often resistant to the majority of available therapeutic options.


Assuntos
Infecções Estafilocócicas/prevenção & controle , Vacinas Antiestafilocócicas/uso terapêutico , Staphylococcus aureus/imunologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Humanos , Infecções Estafilocócicas/imunologia , Vacinas Antiestafilocócicas/imunologia , Vacinas Antiestafilocócicas/farmacologia , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Desenvolvimento de Vacinas , Fatores de Virulência/genética , Fatores de Virulência/imunologia
14.
Immunol Lett ; 241: 49-54, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34942191

RESUMO

Prohibitin is a highly conserved ubiquitously expressed protein involved in several key cellular functions. Targeting of this protein in the membrane by the virulence polysaccharide, Vi, of human typhoid-causing pathogen, Salmonella enterica serovar Typhi (S. Typhi), results in suppression of IL-2 secretion from T cells activated through the T-cell receptor (TCR). However, the mechanism of this suppression remains unclear. Here, using Vi as a probe, we show that membrane prohibitin associates with the src-tyrosine kinase, p56lck (Lck), and actin in human model T cell line, Jurkat. Activation with anti-CD3 antibody brings about dissociation of this complex, which coincides with downstream ERK activation. The trimolecular complex reappears towards culmination of proximal TCR signaling. Engagement of cells with Vi prevents TCR-triggered activation of Lck and ERK by inhibiting dissociation of the former from prohibitin. These findings suggest a regulatory role for membrane prohibitin in Lck activation and TCR signaling.


Assuntos
Membrana Celular/metabolismo , Complexos Multiproteicos/metabolismo , Proibitinas/metabolismo , Salmonella typhi/patogenicidade , Linfócitos T/fisiologia , Actinas/metabolismo , Humanos , Terapia de Imunossupressão , Células Jurkat , Ativação Linfocitária , Polissacarídeos Bacterianos/imunologia , Ligação Proteica , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Fatores de Virulência/imunologia
15.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34930823

RESUMO

Coxiella burnetii is a bacterial pathogen that replicates within host cells by establishing a membrane-bound niche called the Coxiella-containing vacuole. Biogenesis of this compartment requires effectors of its Dot/Icm type IV secretion system. A large cohort of such effectors has been identified, but the function of most of them remain elusive. Here, by a cell-based functional screening, we identified the effector Cbu0513 (designated as CinF) as an inhibitor of NF-κB signaling. CinF is highly similar to a fructose-1,6-bisphosphate (FBP) aldolase/phosphatase present in diverse bacteria. Further study reveals that unlike its ortholog from Sulfolobus tokodaii, CinF does not exhibit FBP phosphatase activity. Instead, it functions as a protein phosphatase that specifically dephosphorylates and stabilizes IκBα. The IκBα phosphatase activity is essential for the role of CinF in C. burnetii virulence. Our results establish that C. burnetii utilizes a protein adapted from sugar metabolism to subvert host immunity.


Assuntos
Proteínas de Bactérias , Coxiella burnetii , Fosfoproteínas Fosfatases , Febre Q , Transdução de Sinais , Fatores de Virulência , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Chlorocebus aethiops , Coxiella burnetii/genética , Coxiella burnetii/imunologia , Coxiella burnetii/patogenicidade , Células HEK293 , Células HeLa , Humanos , NF-kappa B/genética , NF-kappa B/imunologia , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/imunologia , Febre Q/genética , Febre Q/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Células Vero , Fatores de Virulência/genética , Fatores de Virulência/imunologia
16.
BMC Plant Biol ; 21(1): 582, 2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34886813

RESUMO

BACKGROUND: The oomycete pathogen secretes many effectors into host cells to manipulate host defenses. For the majority of effectors, the mechanisms related to how they alter the expression of host genes and reprogram defenses are not well understood. In order to investigate the molecular mechanisms governing the influence that the Phytophthora infestans RXLR effector Pi04089 has on host immunity, a comparative transcriptome analysis was conducted on Pi04089 stable transgenic and wild-type potato plants. RESULTS: Potato plants stably expressing Pi04089 were more susceptible to P. infestans. RNA-seq analysis revealed that 658 upregulated genes and 722 downregulated genes were characterized in Pi04089 transgenic lines. A large number of genes involved in the biological process, including many defense-related genes and certain genes that respond to salicylic acid, were suppressed. Moreover, the comparative transcriptome analysis revealed that Pi04089 significantly inhibited the expression of many flg22 (a microbe-associated molecular pattern, PAMP)-inducible genes, including various Avr9/Cf-9 rapidly elicited (ACRE) genes. Four selected differentially expressed genes (StWAT1, StCEVI57, StKTI1, and StP450) were confirmed to be involved in host resistance against P. infestans when they were transiently expressed in Nicotiana benthamiana. CONCLUSION: The P. infestans effector Pi04089 was shown to suppress the expression of many resistance-related genes in potato plants. Moreover, Pi04089 was found to significantly suppress flg22-triggered defense signaling in potato plants. This research provides new insights into how an oomycete effector perturbs host immune responses at the transcriptome level.


Assuntos
Regulação da Expressão Gênica de Plantas , Phytophthora infestans/imunologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal , Solanum tuberosum/imunologia , Fatores de Virulência/imunologia , Resistência à Doença/genética , Resistência à Doença/imunologia , Regulação da Expressão Gênica , Plantas Geneticamente Modificadas , Solanum tuberosum/genética , Solanum tuberosum/microbiologia , Transcriptoma
17.
PLoS Pathog ; 17(11): e1010017, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34724007

RESUMO

The plant pathogen Pseudomonas syringae secretes multiple effectors that modulate plant defenses. Some effectors trigger defenses due to specific recognition by plant immune complexes, whereas others can suppress the resulting immune responses. The HopZ3 effector of P. syringae pv. syringae B728a (PsyB728a) is an acetyltransferase that modifies not only components of plant immune complexes, but also the Psy effectors that activate these complexes. In Arabidopsis, HopZ3 acetylates the host RPM1 complex and the Psy effectors AvrRpm1 and AvrB3. This study focuses on the role of HopZ3 during tomato infection. In Psy-resistant tomato, the main immune complex includes PRF and PTO, a RIPK-family kinase that recognizes the AvrPto effector. HopZ3 acts as a virulence factor on tomato by suppressing AvrPto1Psy-triggered immunity. HopZ3 acetylates AvrPto1Psy and the host proteins PTO, SlRIPK and SlRIN4s. Biochemical reconstruction and site-directed mutagenesis experiments suggest that acetylation acts in multiple ways to suppress immune signaling in tomato. First, acetylation disrupts the critical AvrPto1Psy-PTO interaction needed to initiate the immune response. Unmodified residues at the binding interface of both proteins and at other residues needed for binding are acetylated. Second, acetylation occurs at residues important for AvrPto1Psy function but not for binding to PTO. Finally, acetylation reduces specific phosphorylations needed for promoting the immune-inducing activity of HopZ3's targets such as AvrPto1Psy and PTO. In some cases, acetylation competes with phosphorylation. HopZ3-mediated acetylation suppresses the kinase activity of SlRIPK and the phosphorylation of its SlRIN4 substrate previously implicated in PTO-signaling. Thus, HopZ3 disrupts the functions of multiple immune components and the effectors that trigger them, leading to increased susceptibility to infection. Finally, mass spectrometry used to map specific acetylated residues confirmed HopZ3's unusual capacity to modify histidine in addition to serine, threonine and lysine residues.


Assuntos
Acetiltransferases/metabolismo , Complexo Antígeno-Anticorpo/imunologia , Proteínas de Bactérias/antagonistas & inibidores , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Pseudomonas syringae/patogenicidade , Solanum lycopersicum/imunologia , Acetilação , Acetiltransferases/genética , Acetiltransferases/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Solanum lycopersicum/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Virulência , Fatores de Virulência/genética , Fatores de Virulência/imunologia , Fatores de Virulência/metabolismo
18.
Front Immunol ; 12: 749432, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34819932

RESUMO

Staphylococcus aureus is a common human commensal and the leading cause of diverse infections. To identify distinctive parameters associated with infection and colonization, we compared the immune and inflammatory responses of patients with a diagnosis of invasive S. aureus disease to healthy donors. We analyzed the inflammatory responses founding a pattern of distinctive cytokines significantly higher in the patients with invasive disease. The measure of antibody levels revealed a wide antibody responsiveness from all subjects to most of the antigens, with significantly higher response for some antigens in the invasive patients compared to control. Moreover, functional antibodies against toxins distinctively associated with the invasive disease. Finally, we examined the genomic variability of isolates, showing no major differences in genetic distribution compared to a panel of representative strains. Overall, our study shows specific signatures of cytokines and functional antibodies in patients with different primary invasive diseases caused by S. aureus. These data provide insight into human responses towards invasive staphylococcal infections and are important for guiding the identification of novel preventive and therapeutic interventions against S. aureus.


Assuntos
Infecções Estafilocócicas/imunologia , Adulto , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/imunologia , Criança , Citocinas/sangue , Humanos , Imunoglobulina G/sangue , Análise Serial de Proteínas , Infecções Estafilocócicas/sangue , Infecções Estafilocócicas/genética , Staphylococcus aureus/imunologia , Fatores de Virulência/imunologia
19.
Front Immunol ; 12: 752168, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34819933

RESUMO

Modification of surface antigens and differential expression of virulence factors are frequent strategies pathogens adopt to escape the host immune system. These escape mechanisms make pathogens a "moving target" for our immune system and represent a challenge for the development of vaccines, which require more than one antigen to be efficacious. Therefore, the availability of strategies, which simplify vaccine design, is highly desirable. Bacterial Outer Membrane Vesicles (OMVs) are a promising vaccine platform for their built-in adjuvanticity, ease of purification and flexibility to be engineered with foreign proteins. However, data on if and how OMVs can be engineered with multiple antigens is limited. In this work, we report a multi-antigen expression strategy based on the co-expression of two chimeras, each constituted by head-to-tail fusions of immunogenic proteins, in the same OMV-producing strain. We tested the strategy to develop a vaccine against Staphylococcus aureus, a Gram-positive human pathogen responsible for a large number of community and hospital-acquired diseases. Here we describe an OMV-based vaccine in which four S. aureus virulent factors, ClfAY338A, LukE, SpAKKAA and HlaH35L have been co-expressed in the same OMVs (CLSH-OMVsΔ60). The vaccine elicited antigen-specific antibodies with functional activity, as judged by their capacity to promote opsonophagocytosis and to inhibit Hla-mediated hemolysis, LukED-mediated leukocyte killing, and ClfA-mediated S. aureus binding to fibrinogen. Mice vaccinated with CLSH-OMVsΔ60 were robustly protected from S. aureus challenge in the skin, sepsis and kidney abscess models. This study not only describes a generalized approach to develop easy-to-produce and inexpensive multi-component vaccines, but also proposes a new tetravalent vaccine candidate ready to move to development.


Assuntos
Antígenos de Bactérias/imunologia , Membrana Externa Bacteriana , Proteínas de Bactérias/imunologia , Vacinas Bacterianas/administração & dosagem , Staphylococcus aureus/imunologia , Vacinas Combinadas/administração & dosagem , Fatores de Virulência/imunologia , Animais , Anticorpos Antibacterianos/sangue , Feminino , Células HL-60 , Humanos , Camundongos , Infecções Estafilocócicas/prevenção & controle
20.
Nature ; 600(7887): 138-142, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34759314

RESUMO

Pathogens use virulence factors to inhibit the immune system1. The guard hypothesis2,3 postulates that hosts monitor (or 'guard') critical innate immune pathways such that their disruption by virulence factors provokes a secondary immune response1. Here we describe a 'self-guarded' immune pathway in human monocytes, in which guarding and guarded functions are combined in one protein. We find that this pathway is triggered by ICP0, a key virulence factor of herpes simplex virus type 1, resulting in robust induction of anti-viral type I interferon (IFN). Notably, induction of IFN by ICP0 is independent of canonical immune pathways and the IRF3 and IRF7 transcription factors. A CRISPR screen identified the ICP0 target MORC34 as an essential negative regulator of IFN. Loss of MORC3 recapitulates the IRF3- and IRF7-independent IFN response induced by ICP0. Mechanistically, ICP0 degrades MORC3, which leads to de-repression of a MORC3-regulated DNA element (MRE) adjacent to the IFNB1 locus. The MRE is required in cis for IFNB1 induction by the MORC3 pathway, but is not required for canonical IFN-inducing pathways. As well as repressing the MRE to regulate IFNB1, MORC3 is also a direct restriction factor of HSV-15. Our results thus suggest a model in which the primary anti-viral function of MORC3 is self-guarded by its secondary IFN-repressing function-thus, a virus that degrades MORC3 to avoid its primary anti-viral function will unleash the secondary anti-viral IFN response.


Assuntos
Adenosina Trifosfatases/imunologia , Proteínas de Ligação a DNA/imunologia , Modelos Imunológicos , Fatores de Virulência/imunologia , Adenosina Trifosfatases/deficiência , Adenosina Trifosfatases/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/metabolismo , Edição de Genes , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 1/patogenicidade , Humanos , Proteínas Imediatamente Precoces/imunologia , Imunidade Inata , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 7 de Interferon/metabolismo , Interferon Tipo I/antagonistas & inibidores , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Monócitos/imunologia , Receptor de Interferon alfa e beta , Proteínas Repressoras/deficiência , Proteínas Repressoras/imunologia , Proteínas Repressoras/metabolismo , Elementos de Resposta/genética , Ubiquitina-Proteína Ligases/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...